Basisprüfung Lineare Algebra

Wichtige Hinweise

- Zweistündige Prüfung.
- Erlaubte Hilfsmittel: 20 A4-Seiten eigene Notizen (von Hand geschrieben). Taschenrechner sind NICHT erlaubt.
- Alle Aufgaben werden gleich gewichtet.
- Begründen Sie jeweils Ihre Aussagen. Nicht motivierte Lösungen (ausser bei der Multiple-Choice-Aufgabe) werden nicht akzeptiert!
- Tragen Sie die Lösung der Aufgabe 6 (Multiple Choice) auf dem Extrablatt ein.

Name		Note
Vorname		
Studiengang		
Leginummer		
Prüfung	Lineare Algebra	
Datum	17.08.2016	

1	2	3	4	5	6	Punkte

- Bitte füllen Sie zuerst das Deckblatt aus.
- Legen Sie Ihre Legi auf den Tisch.
- Schalten Sie Ihr Handy aus.
- Beginnen Sie jede Aufgabe auf einer neuen Seite, und schreiben Sie Ihren Namen auf alle Blätter.
- Bitte nicht mit Bleistift schreiben. Auch nicht mit rot oder grün.
- Versuchen Sie Ihren Lösungsweg möglichst klar darzustellen und arbeiten Sie sorgfältig!
- Schauen Sie das Prüfungsblatt erst an, wenn der Assistent das Signal dazu gibt!

1. Gegeben sei die Matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & \alpha \\ 0 & -2 & \beta \end{bmatrix}.$$

- a) Finden Sie $\alpha, \beta \in \mathbb{R}$ so dass die Spaltenvektoren von A orthogonal sind.
- **b)** Mit den Werten α und β wie in **a)**:
 - 1. Berechnen Sie eine QR-Zerlegung von A.
 - 2. Berechnen Sie $|\det(A)|$.
- 2. Gegeben sei die Matrix

$$A = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 4 \end{bmatrix}.$$

- a) Berechnen Sie die Eigenwerte $\lambda_1, \lambda_2, \lambda_3$ und die zugehörigen Eigenvektoren $u^{(1)}, u^{(2)}, u^{(3)}$ von A.
- **b)** Zeigen Sie dass $x^T A x \ge 0$ für alle $x \in \mathbb{R}^3$ und dass x = 0 falls $x^T A x = 0$.
- c) Beweisen Sie, dass die Eigenvektoren $u^{(1)}, u^{(2)}, u^{(3)}$ eine Basis von \mathbb{R}^3 bilden.
- **3.** Gegeben sei die Ebene $U \subset \mathbb{R}^4$ definiert durch

$$U := \left\{ \alpha \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ 1 \\ 3 \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \middle| \alpha, \beta, \gamma \in \mathbb{R} \right\}.$$

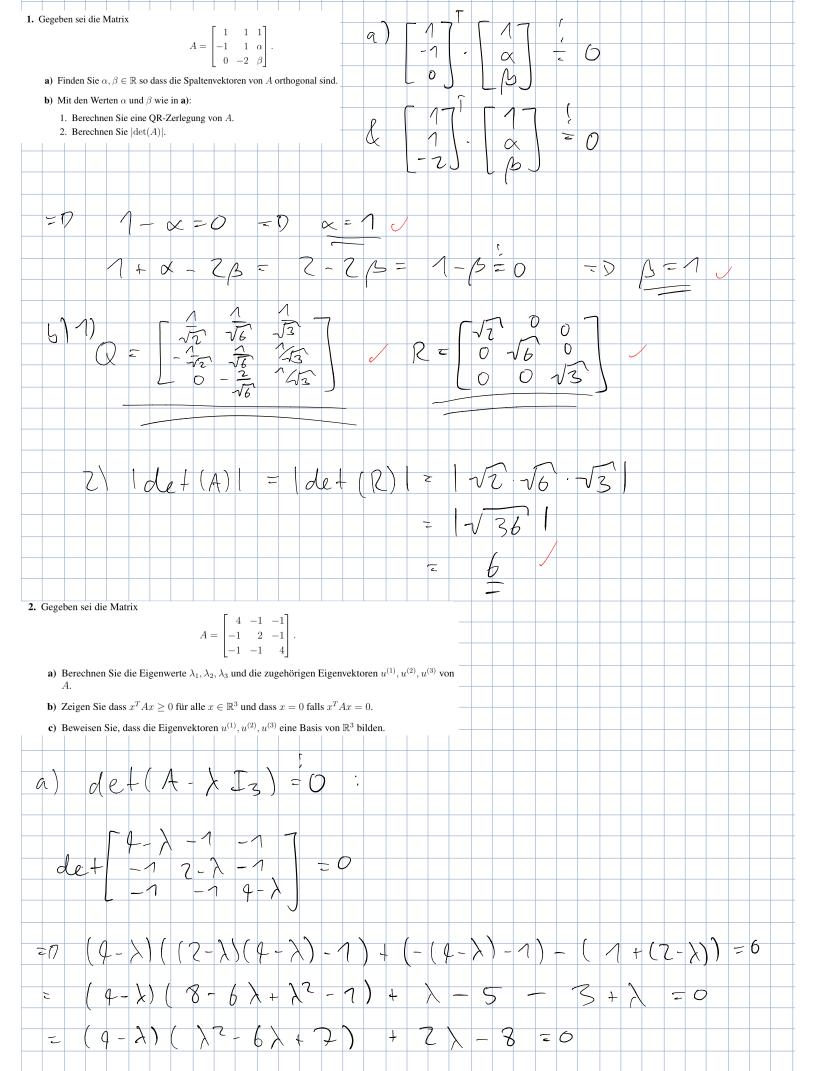
- a) Berechnen Sie die Spiegelung $A: \mathbb{R}^4 \to \mathbb{R}^4$ bezüglich der Ebene U. Hinweis: Berechnen Sie zuerst einen zur Ebene U normalen Vektor $u \in \mathbb{R}^4$.
- b) Gegeben seien im Urbildraum die Basis

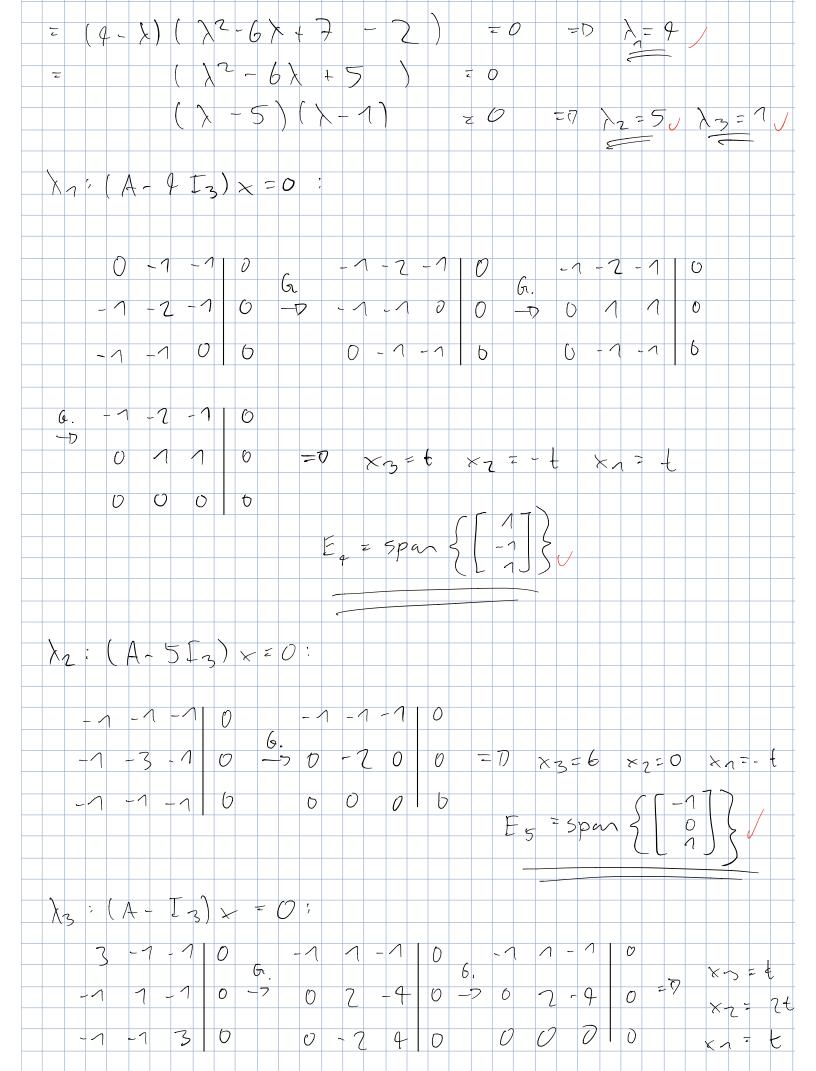
$$\left\{ \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\-1\\1 \end{bmatrix} \right\},$$

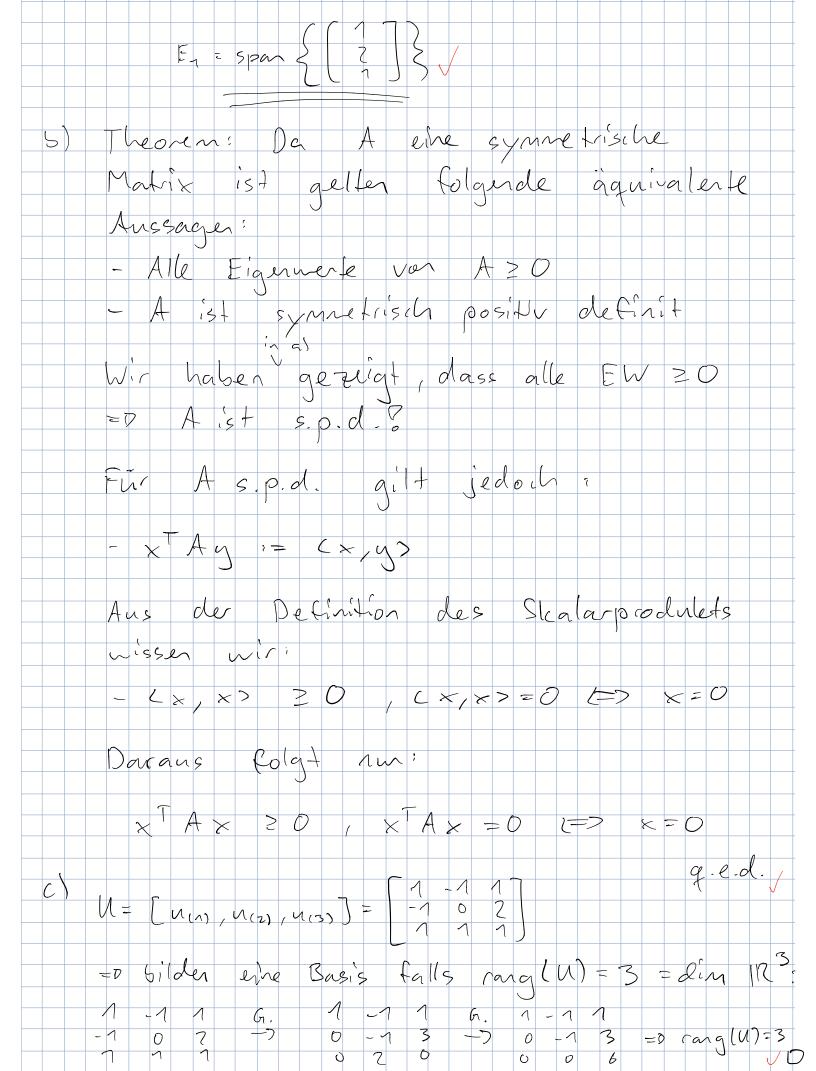
und im Bildraum die Basis

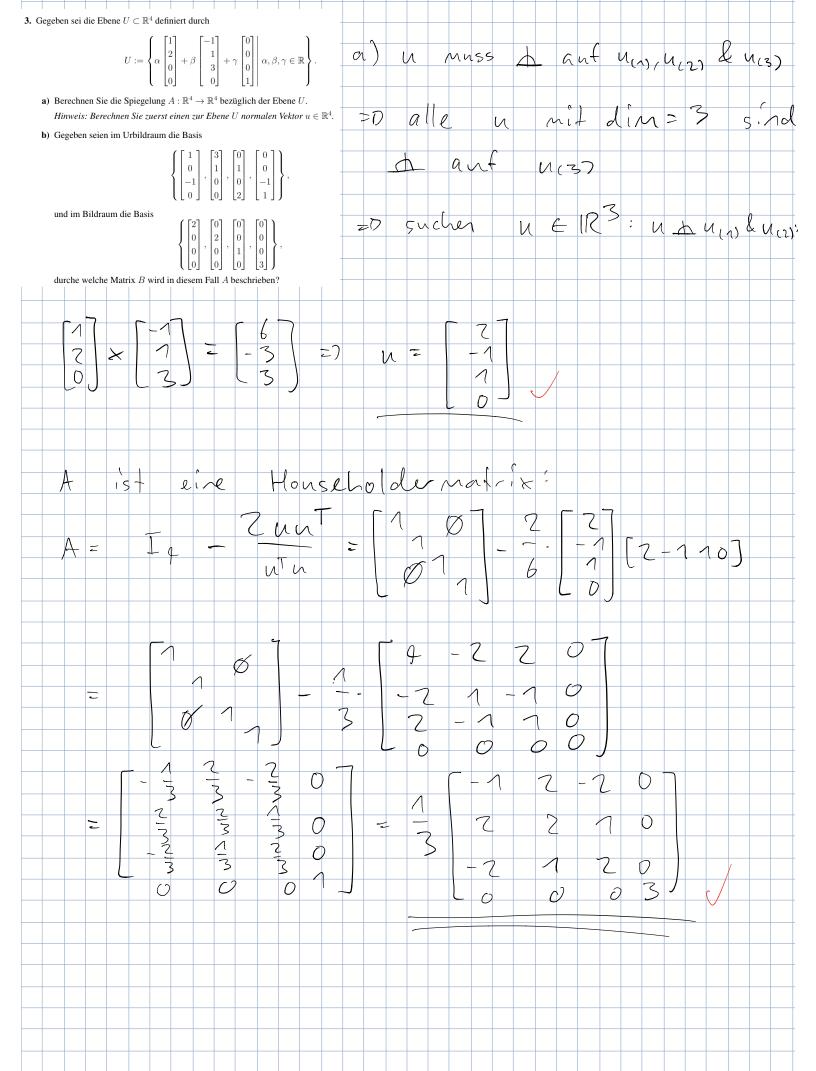
$$\left\{ \begin{bmatrix} 2\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\3\\0 \end{bmatrix} \right\},$$

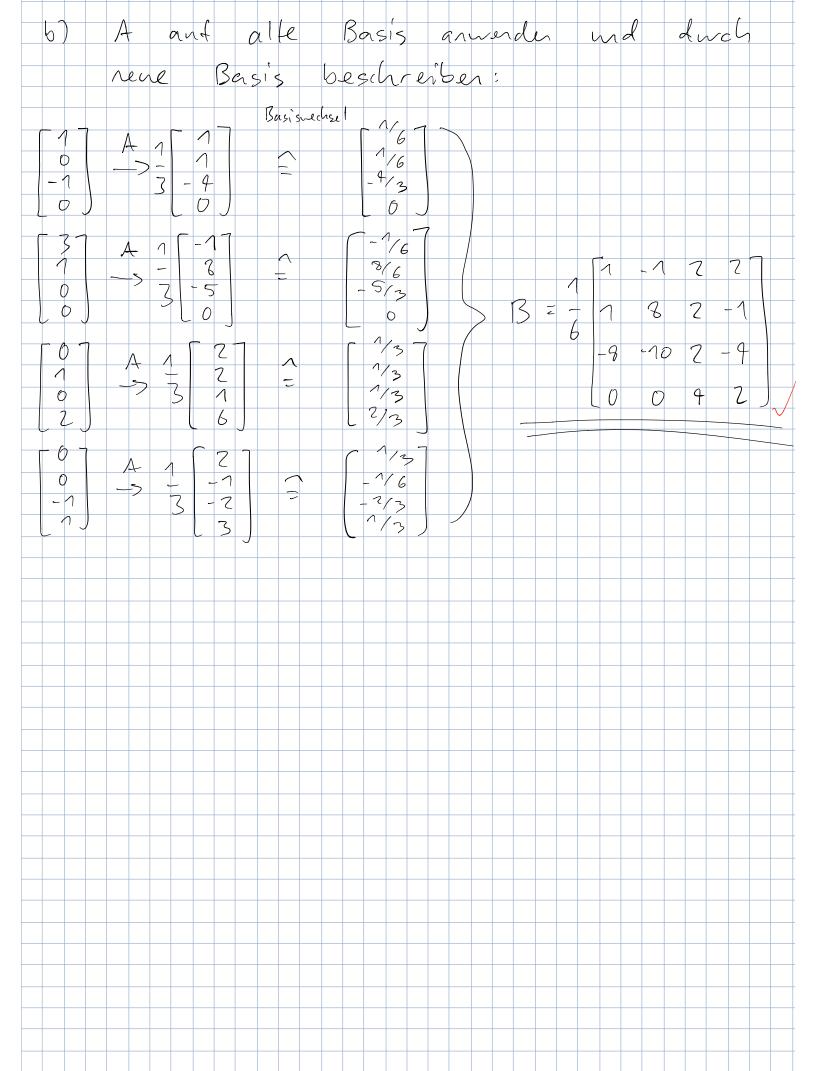
durche welche Matrix B wird in diesem Fall A beschrieben?











4. a) Gegeben seien $A \in \mathbb{R}^{m \times n}$ mit m > n und eine Singulärwertzerlegung $A = USV^T$ von A. Wir betrachten für $b \in \mathbb{R}^n$ das folgende Ausgleichsrechnungsproblem: finde $x \in \mathbb{R}^n$ so dass

$$r := Ax - b$$

minimal wird. Zeigen Sie, dass

$$||r||_2^2 = ||\hat{S}V^T x - d_0||_2^2 + ||d_1||_2^2,$$

wobei $\hat{S} \in \mathbb{R}^{m \times m}$, $d_0 \in \mathbb{R}^n$ und $d_1 \in \mathbb{R}^{m-n}$ definiert sind durch

$$S = \begin{bmatrix} \hat{S} \\ \hline 0 \end{bmatrix}, \qquad U^T b = d = \begin{bmatrix} d_0 \\ d_1 \end{bmatrix}.$$

b) Für ein Experiment betrachtet man das folgende Model

$$y = \beta_1 \sin(x) + \beta_2 \cos(x).$$

Zur Bestimmung der Parameter $\beta_1, \beta_2 \in \mathbb{R}$ liegen die folgende Messungen für $y_i, i = 1, 2, 3$, vor:

$$\begin{array}{c|cccc} x_i & 0 & \frac{\pi}{4} & \frac{3\pi}{4} \\ \hline y_i & \sqrt{2} & 1 & 1 \end{array}$$

Es sollen die Parameter β_1 und β_2 so bestimmt werden, dass $\sum_{i=1}^{3} |\beta_1 \sin(x_i) + \beta_2 \cos(x_i) - y_i|^2$ minimal wird.

Schreiben Sie dies als ein Ausgleichungsproblem der Form

$$A\beta = b$$

und lösen Sie es mit Hilfe der Singulärwertzerlegung.

5. Wir betrachten auf dem Vektorraum

$$\mathcal{L}^{2}[-1,1] := \left\{ f : [-1,1] \to \mathbb{R} \middle| \int_{-1}^{1} |f(t)|^{2} dt < \infty \right\},$$

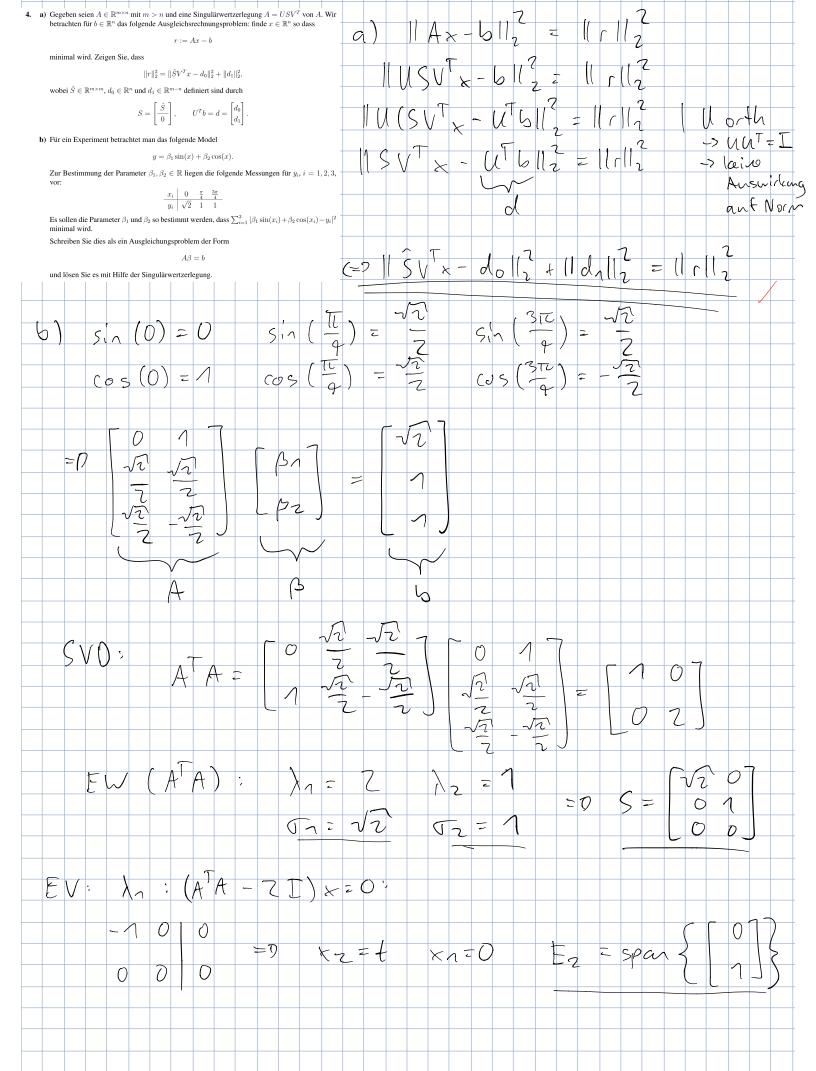
das Skalarprodukt

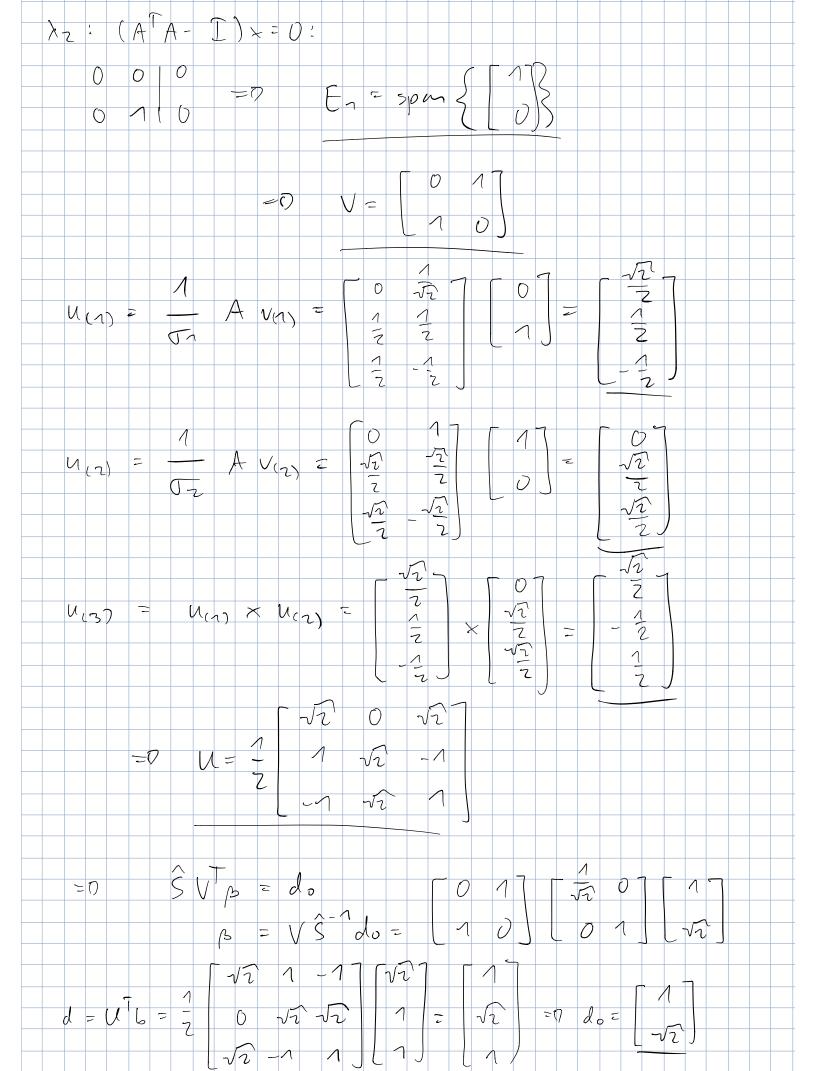
$$\langle f, g \rangle := \int_{-1}^{1} f(t)g(t)dt, \qquad f, g \in \mathcal{L}^{2}[-1, 1].$$

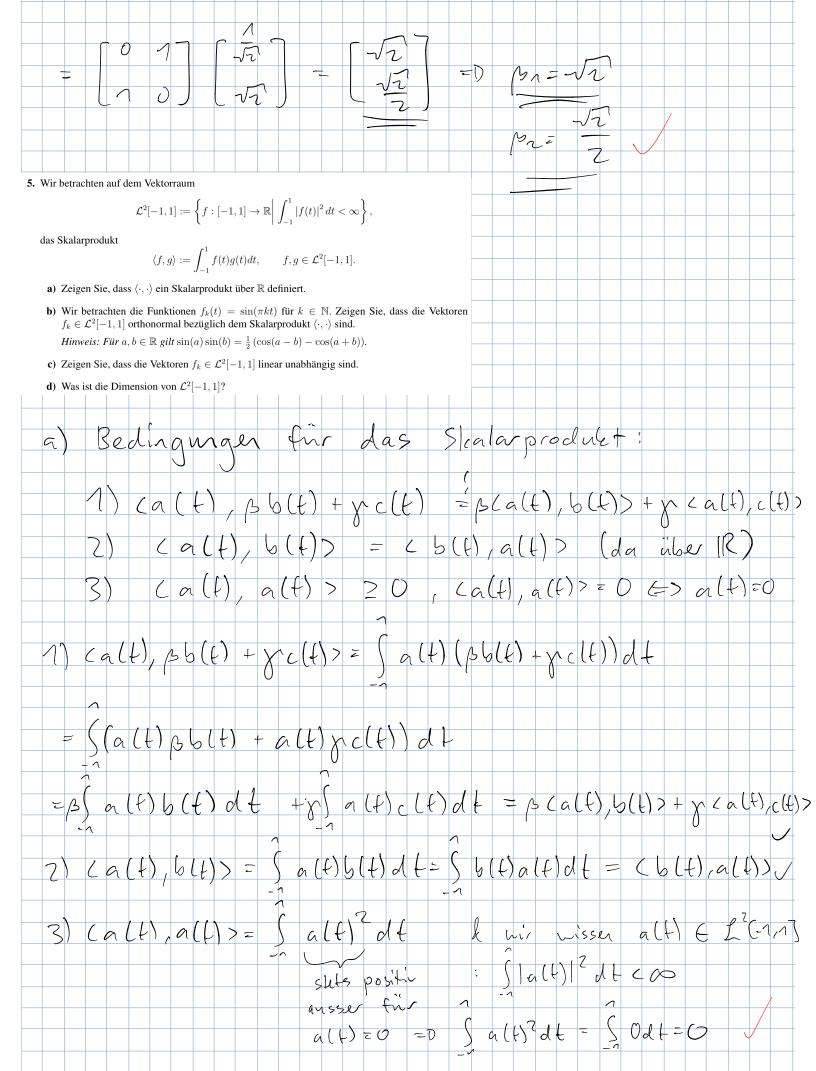
- a) Zeigen Sie, dass $\langle \cdot, \cdot \rangle$ ein Skalarprodukt über $\mathbb R$ definiert.
- b) Wir betrachten die Funktionen $f_k(t) = \sin(\pi kt)$ für $k \in \mathbb{N}$. Zeigen Sie, dass die Vektoren $f_k \in \mathcal{L}^2[-1,1]$ orthonormal bezüglich dem Skalarprodukt $\langle \cdot, \cdot \rangle$ sind.

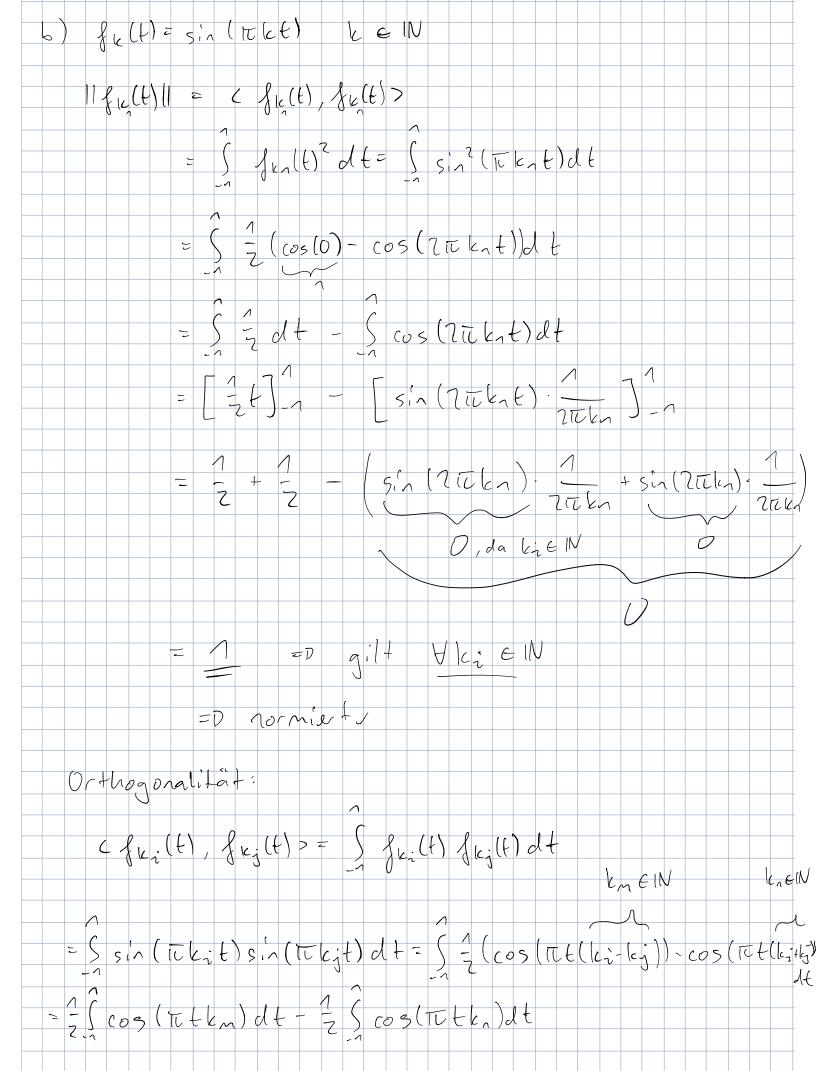
Hinweis: Für
$$a, b \in \mathbb{R}$$
 gilt $\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$.

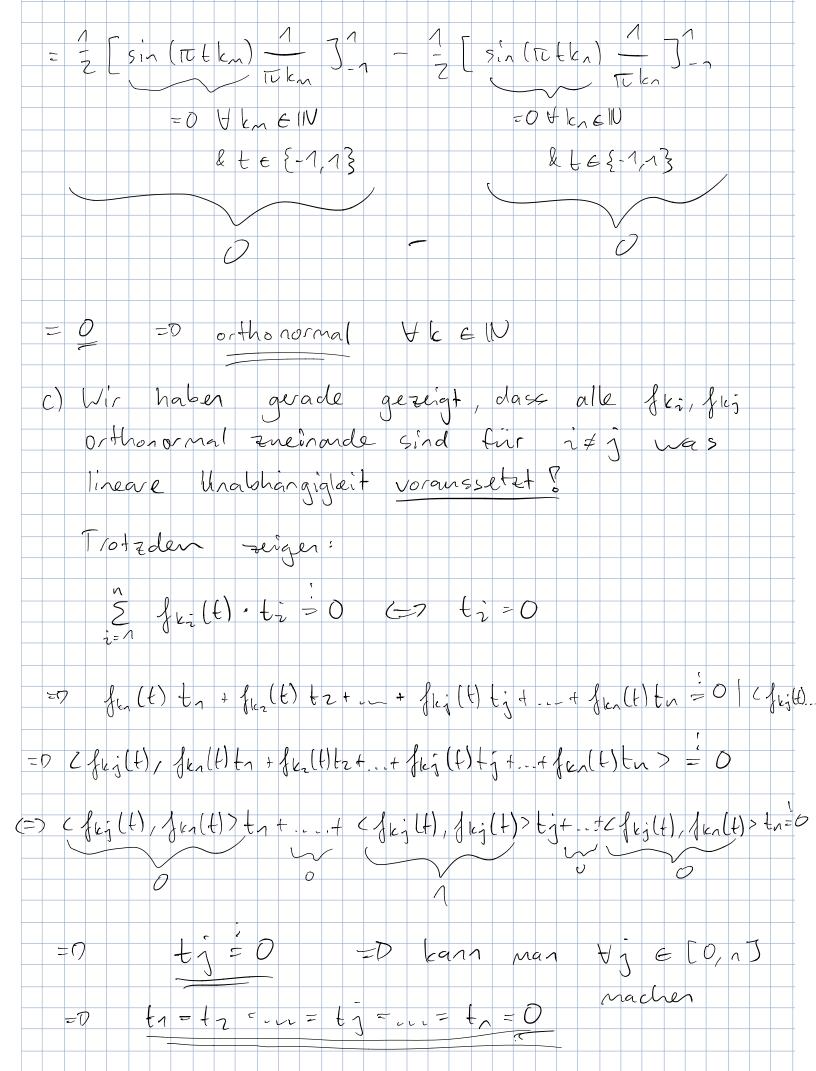
- c) Zeigen Sie, dass die Vektoren $f_k \in \mathcal{L}^2[-1,1]$ linear unabhängig sind.
- **d)** Was ist die Dimension von $\mathcal{L}^2[-1,1]$?

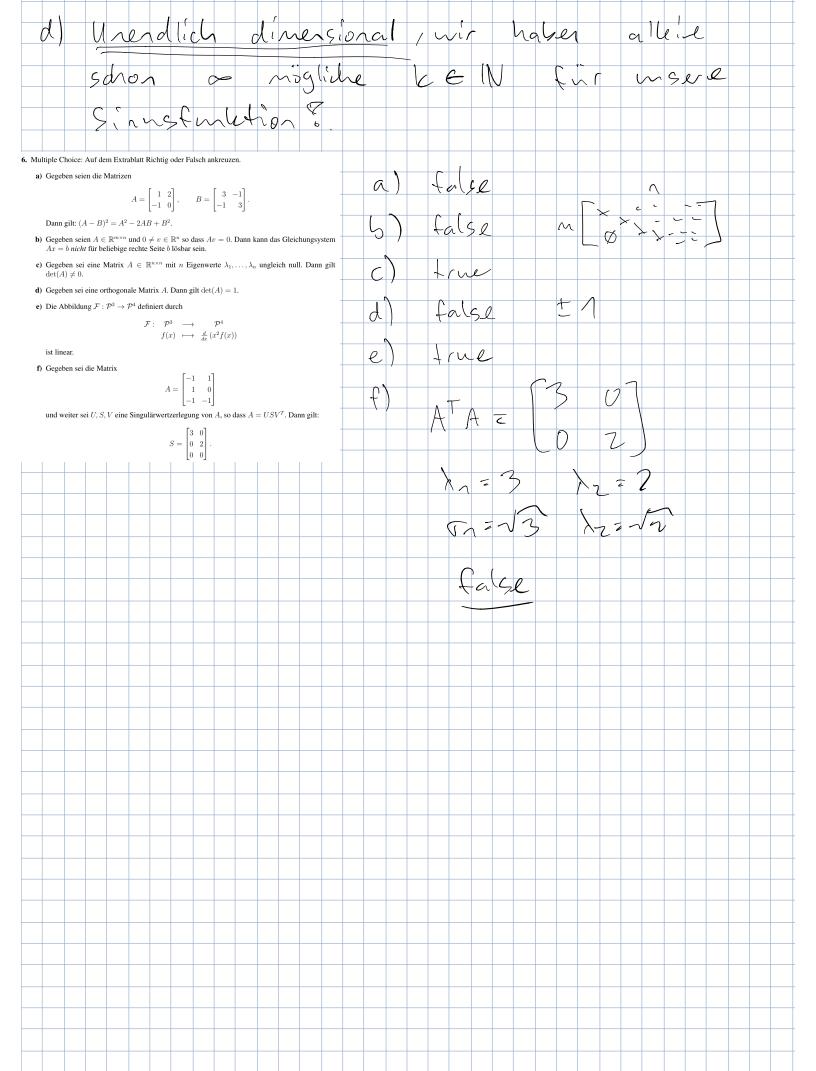












- **6.** Multiple Choice: Auf dem Extrablatt Richtig oder Falsch ankreuzen.
 - a) Gegeben seien die Matrizen

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}.$$

Dann gilt: $(A - B)^2 = A^2 - 2AB + B^2$.

- **b)** Gegeben seien $A \in \mathbb{R}^{m \times n}$ und $0 \neq v \in \mathbb{R}^n$ so dass Av = 0. Dann kann das Gleichungsystem Ax = b nicht für beliebige rechte Seite b lösbar sein.
- c) Gegeben sei eine Matrix $A \in \mathbb{R}^{n \times n}$ mit n Eigenwerte $\lambda_1, \dots, \lambda_n$ ungleich null. Dann gilt $\det(A) \neq 0$.
- **d)** Gegeben sei eine orthogonale Matrix A. Dann gilt det(A) = 1.
- e) Die Abbildung $\mathcal{F}:\mathcal{P}^3\to\mathcal{P}^4$ definiert durch

$$\mathcal{F}: \mathcal{P}^3 \longrightarrow \mathcal{P}^4$$

$$f(x) \longmapsto \frac{d}{dx} (x^2 f(x))$$

ist linear.

f) Gegeben sei die Matrix

$$A = \begin{bmatrix} -1 & 1 \\ 1 & 0 \\ -1 & -1 \end{bmatrix}$$

und weiter sei U, S, V eine Singulärwertzerlegung von A, so dass $A = USV^T$. Dann gilt:

$$S = \begin{bmatrix} 3 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}.$$

2. Gegeben sei die Matrix

$$A = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 4 \end{bmatrix}.$$

- a) Berechnen Sie die Eigenwerte $\lambda_1,\lambda_2,\lambda_3$ und die zugehörigen Eigenvektoren $u^{(1)},u^{(2)},u^{(3)}$ von A.
- **b)** Zeigen Sie dass $x^T A x \ge 0$ für alle $x \in \mathbb{R}^3$ und dass x = 0 falls $x^T A x = 0$.
- c) Beweisen Sie, dass die Eigenvektoren $u^{(1)}, u^{(2)}, u^{(3)}$ eine Basis von \mathbb{R}^3 bilden.

